Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 292: 119680, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725174

RESUMO

Crystallization inhibitors in amorphous solid dispersions (ASD) enable metastable supersaturated drug solutions that persist for a physiologically relevant time. Olefin cross-metathesis (CM) has successfully provided multifunctional cellulose-based derivatives as candidate ASD matrix polymers. In proof of concept studies, we prepared hydrophobic bile salt/cellulose adducts by CM with naturally occurring bile salts. We hypothesized that increased hydrophilicity would enhance the ability of these conjugates to maximize bioactive supersaturation. Their selective preparation presents a significant synthetic challenge, given polysaccharide reactivity and polysaccharide and bile salt complexity. We prepared such derivatives using a more hydrophilic hydroxypropyl cellulose (HPC) backbone, employing a pent-4-enyl tether (Pen) for appending bile acids. We probed structure-property relationships by varying the nature and degree of substitution of the bile acid substituent (lithocholic or deoxycholic acid). These conjugates are indeed synergistic inhibitors, as demonstrated with the fast-crystallizing prostate cancer drug, enzalutamide. The lithocholic acid methyl ester derivative, AcrMLC-PenHHPCPen (0.64), increased induction time 68 fold vs. drug alone.


Assuntos
Ácidos e Sais Biliares , Celulose , Celulose/química , Cristalização , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Solubilidade
2.
Mol Pharm ; 18(3): 836-849, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539105

RESUMO

Amorphous solid dispersions (ASDs), which consist of a drug dispersed in a polymeric matrix, are increasingly being applied to improve the in vivo performance of poorly water-soluble drugs delivered orally. The polymer is a critical component, playing several roles including facilitating drug release from the ASD, as well as delaying crystallization from the supersaturated solution generated upon dissolution. Certain ASD formulations dissolve to produce amorphous drug-rich nanodroplets. The interaction of the polymer with these nanodroplets is poorly understood but is thought to be important for inhibiting crystallization in these systems. In this study, the impact of ionic polymers on the crystallization kinetics of enzalutamide from supersaturated solutions containing different amounts of amorphous nanodroplets was evaluated by determination of nucleation induction times. The amount of the polymer associated with the drug nanodroplets was also determined. When comparing two polymers, hydroxypropylmethyl cellulose acetate succinate (HPMCAS) and Eudragit E PO, it was found that the crystallization tendency and physical properties of the drug nanodroplets varied in the presence of these two polymers. Both polymers distributed between the aqueous phase and the drug-rich nanodroplets. A greater amount of Eudragit E PO was associated with the drug-rich nanodroplets. Despite this, Eudragit E PO was a less-effective crystallization inhibitor than HPMCAS in systems containing nanodroplets. In conclusion, in supersaturated solutions containing amorphous nanodroplets, the extent of association of a polymer with the drug nanodroplet does not solely predict crystallization inhibition.


Assuntos
Nanopartículas/química , Polímeros/química , Água/química , Cristalização/métodos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Derivados da Hipromelose/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Solubilidade/efeitos dos fármacos
3.
Carbohydr Polym ; 221: 37-47, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227165

RESUMO

Bile salts tend to form micelles in aqueous media and can thereby contribute to drug solubilization; they also exhibit crystallization inhibition properties that can stabilize supersaturated drug solutions. Herein, we explore conjugation of bile salts with polysaccharides to create new, amphiphilic polysaccharide derivatives with intriguing properties, portending broad utility in various applications. We introduce efficient conjugation of cholesterol (as a model steroid), lithocholic acid, and deoxycholic acid by mild, modular olefin cross-metathesis reactions. These small molecules were first modified with an acrylate group from the A-ring hydroxyl, then reacted with cellulose derivatives bearing olefin-terminated metathesis "handles". Successful conjugation of bile acids has demonstrated chemoselective cross-metathesis with complex, polyfunctional structures, and large multi-ring systems. It also enabled an efficient, general pathway for polysaccharide-bile salt conjugates, which promise synergy for applications such as amorphous solid dispersion (ASD).


Assuntos
Celulose/química , Colesterol/análogos & derivados , Ácido Desoxicólico/análogos & derivados , Ésteres/química , Ácido Litocólico/análogos & derivados , Celulose/síntese química , Colesterol/síntese química , Ácido Desoxicólico/síntese química , Ésteres/síntese química , Ácido Litocólico/síntese química , Ácido Litocólico/química , Estudo de Prova de Conceito , Solubilidade
4.
Carbohydr Polym ; 182: 149-158, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29279109

RESUMO

The efficacy of rifapentine, an oral antibiotic used to treat tuberculosis, may be reduced due to degradation at gastric pH and low solubility at intestinal pH. We hypothesized that delivery properties would be improved in vitro by incorporating rifapentine into pH-responsive amorphous solid dispersions (ASDs) with cellulose derivatives including: hydroxypropylmethylcellulose acetate succinate (HPMCAS), cellulose acetate suberate (CASub), and 5-carboxypentyl hydroxypropyl cellulose (CHC). ASDs generally reduced rifapentine release at gastric pH, with CASub affording >31-fold decrease in area under the curve (AUC) compared to rifapentine alone. Critically, reduced gastric dissolution was accompanied by reduced degradation to 3-formylrifamycin. Certain ASDs also enhanced apparent solubility and stabilization of supersaturated solutions at intestinal pH, with HPMCAS providing nearly 4-fold increase in total AUC vs. rifapentine alone. These results suggest that rifapentine delivery via ASD with these cellulosic polymers may improve bioavailability in vivo.


Assuntos
Antibióticos Antituberculose/química , Celulose/química , Sistemas de Liberação de Medicamentos , Rifampina/análogos & derivados , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio , Metilcelulose/análogos & derivados , Conformação Molecular , Rifampina/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...